

Class: IX**Time Allowed: 20 minutes****Q1:****MODEL PAPER EXAMINATION 2026****SUBJECT: PHYSICS****(SECTION "A")****Marks: 11****Note:** Attempt **ALL** questions from section 'A'. Each question carries **ONE** mark.

1. How many significant figures are in the number 0.00705?
A. 2 B. 3 C. 4 D. 5
2. The motion of a soccer ball on the ground is:
A. Linear motion B. Circular motion C. Vibratory motion D. Random motion
3. Satellites are placed into orbit using:
A. Helicopters B. Aeroplanes C. Rockets D. None of these
4. The purpose of springs in brakes and clutches is to:
A. Restore original position B. Measure forces C. Absorb strain energy D. Absorb shocks
5. Friction opposes motion between two bodies in contact due to:
A. Charge on bodies B. Weight of bodies C. Roughness of surfaces D. Mass of bodies
6. If a force of 6 N moves an object by 3 m in the direction of the force, the work done is:
A. 6 Joules B. 12 Joules C. 18 Joules D. None of these
7. A spring balance is used to measure:
A. Mass B. Weight C. Elasticity D. Density
8. Which of the following is a natural satellite?
A. Earth B. Jupiter C. Moon D. Mars
9. The rate of change of position in a specific direction is called:
A. Displacement B. Acceleration C. Velocity D. Speed
10. Distance is a _____ quantity:
A. Vector B. Scalar C. Both A and B D. None of these
11. The motion of a pendulum is classified as:
A. Circular B. Translatory C. Linear D. Vibratory

(Practical Based Assessment)**Marks: 16**

12. A student determines the circumference of a golf ball. Which instrument gives this reading?
A. Calipers B. Micrometer C. Rule D. Tape
13. The diameter and the length of a thin wire, approximately 50 cm in length, are measured as precisely as possible. What are the best instruments to use?

	Length	Diameter
A	Vernier Calipers	Micrometer
B	Tape	Rule
C	Rule	Vernier Calipers
D	Rule	Micrometer

14. A student drops a table-tennis ball from rest into the air. What happens to the velocity and acceleration of the ball during the first few seconds after it is released?

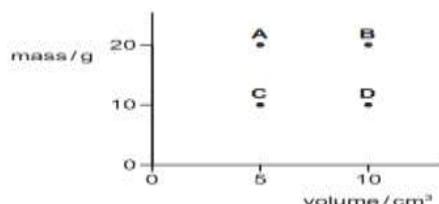
	Velocity	Acceleration
A	Increases	Increases
B	Decreases	Decreases
C	Decreases	Increases
D	Increases	Decreases

15. In which scenario does friction act in the same direction as the forward motion of the object it is affecting?

A. A suitcase accelerating on a conveyor belt B. Sandpaper rubbing against a wooden block
 C. The skis of a skier accelerating downhill on smooth snow D. The tires of a car during braking

16. Ahmed pushes a heavy box along the ground. A force acts between Ahmed's hands and the box, and a force acts between his feet and the floor. Determine the direction of these forces on Ahmed.

	Force on Ahmed's hands	Force on Ahmed's feet
A	Towards the left	Towards the left
B	Towards the left	Towards the right
C	Towards the right	Towards the left
D	Towards the right	Towards the right


17. If the weight of an object is measured as 12 N in air and 9 N in water, what is the density of the object? (Assume the density of water is 1000 kg/m³)

A. 1000 kg/m³ B. 1500 kg/m³ C. 3000 kg/m³ D. 6000 kg/m³

18. During summer, the temperature of rocks increases more quickly than the temperature of a nearby lake. This is because of:

A. State of matter B. Specific heat C. Evaporation D. Atmospheric pressure

19. Saima plots the mass and volume of 4 different objects. Which one has the smallest density?

Class: IX

MODEL PAPER EXAMINATION 2026

Time: 2 hours 40 minutes SUBJECT: PHYSICS (SECTION "B" AND SECTION "C")
SECTION "B" (SHORT ANSWER QUESTIONS)

Total Marks 48
24 Marks

12

Q2(a): Attempt any **FOUR** questions from this part.

- Give definitions for the following:
 a) Atomic Physics b) Plasma Physics c) Nuclear Physics
- What is uniform velocity? Define it.
- Explain translatory motion and provide an example to illustrate it.
- Define temperature and write the equation to convert Fahrenheit to Celsius.
- What do you understand by centripetal force?
- State Newton's third law of motion and explain it briefly.
- Define a system and distinguish it from an isolated system.
- Define friction and explain its significance in everyday motion.

Q2(b): Attempt any **FOUR** questions from this part.

12

- A truck with a mass of 1500 kg has an engine producing an acceleration of 3 m/s². If 500 kg of cargo is added, what will the new acceleration be?
- If a body with a mass of 50 kg experiences a force of 400 N, what is the resulting acceleration?
- A stone is dropped from a height of 100 m. Calculate the time it takes to hit the ground (take g = 9.8 m/s²).
- A cylinder contains 25 m³ of gas at a pressure of 200,000 Pa. If the volume decreases to 15 m³, calculate the final pressure, assuming constant temperature.
- Calculate the spring constant if a spring stretches by 4 cm under a load of 20 N.
- A worker applies a force of 20 N at each end of a wrench to generate a torque of 80 Nm. Determine the length of the moment arm.
- A machine performs 1200 J of work in 20 minutes. Calculate the power output of the machine.
- Find the resultant force of three forces: 20 N along the x-axis, 12 N at an angle of 45° with the x-axis, and 8 N along the y-axis.

SECTION "C" (DETAILED ANSWER QUESTIONS)

24 Marks

Q3: Attempt any **FOUR** questions from this section. Your answer should not exceed 20 - 30 lines.

- What is an artificial satellite? Derive the formula for the velocity of a satellite orbiting the Earth, and show that it is given by $v = \sqrt{g_h(R_E + h)}$, where g_h is the acceleration due to gravity at the satellite's altitude, R_E is the radius of the Earth, and h is the height of the satellite above the Earth's surface.
- Define couple.
- What is a hydraulic lift or jack? Explain its construction and describe how it works.
- State Pascal's law. Provide examples of its applications in daily life.
- Describe Artificial gravity verity.
- Define linear expansion and volumetric expansion. Derive the equation $\Delta L = \alpha L \Delta T$.

END OF PAPER